Schottky Rectifier, 2×20 A

TO-220AB

PRODUCT SUMMARY	
Package	TO-220AB
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 20 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}$	45 V
$\mathrm{~V}_{\mathrm{F}}$ at I_{F}	0.58 V
I_{RM} max.	95 mA at $125^{\circ} \mathrm{C}$
T_{J} max.	$150{ }^{\circ} \mathrm{C}$
Diode variation	Common cathode
E_{AS}	20 mJ

FEATURES

- $150{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{J}}$ operation
- Low forward voltage drop

- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability

RoHS COMPLIANT halogen FREE Available

- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified according to JEDEC-JESD47
- Halogen-free according to IEC 61249-2-21 definition (-N3 only)

DESCRIPTION

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to $150{ }^{\circ} \mathrm{C}$ junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Rectangular waveform (per device)	40	A
$\mathrm{~V}_{\text {RRM }}$		45	V
$\mathrm{I}_{\text {FRM }}$	$\mathrm{T}_{\mathrm{C}}=118^{\circ} \mathrm{C}($ per leg $)$	40	A
$\mathrm{I}_{\mathrm{FSM}}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	900	
$\mathrm{~V}_{\mathrm{F}}$	$20 \mathrm{~A}_{\mathrm{pk}}, \mathrm{T}_{J}=125^{\circ} \mathrm{C}$	0.58	V
$\mathrm{~T}_{J}$	Range	-65 to 150	${ }^{\circ} \mathrm{C}$

VOLTAGE RATINGS					
PARAMETER	SYMBOL	VS-MBR4045CTPbF	VS-MBR4045CT-N3	UNITS	
Maximum DC reverse voltage	V_{R}				
Maximum working peak reverse voltage	$\mathrm{V}_{\mathrm{RWM}}$	45			

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum averageforward current \quad per leg	$I_{\text {F }}(\mathrm{AV})$	$\mathrm{T}_{\mathrm{C}}=118{ }^{\circ} \mathrm{C}$, rated V_{R}		20	A
				40	
Peak repetitive forward current per leg	$\mathrm{I}_{\text {FRM }}$	Rated V_{R}, square wave, $20 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=118^{\circ} \mathrm{C}$		40	
Maximum peak one cycle non-repetitive surge current per leg	$I_{\text {FSM }}$	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse	Following any rated load condition and with rated $\mathrm{V}_{\text {RRM }}$ applied	900	
		10 ms sine or 6 ms rect. pulse		210	
Non-repetitive avalanche energy per leg	$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {AS }}=3 \mathrm{~A}, \mathrm{~L}=4.40 \mathrm{mH}$		20	mJ
Repetitive avalanche current per leg	$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $V_{A}=1.5 \times V_{R}$ typical		3	A

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop	$\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$	20 A		0.60	V
		40 A	$\mathrm{J}=25$	0.78	
		20 A	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	0.58	
		40 A		0.75	
Maximum instantaneus reverse current	$\mathrm{I}_{\mathrm{RM}}{ }^{(1)}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	Rated DC voltage	1	mA
		$\mathrm{T}_{\mathrm{J}}=100{ }^{\circ} \mathrm{C}$		50	
		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		95	
Maximum junction capacitance	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} \mathrm{DC}$, (test signal range 100 kHz to 1 MHz) $25^{\circ} \mathrm{C}$		900	pF
Typical series inductance	Ls	Measured from top of terminal to mounting plane		8.0	nH
Maximum voltage rate of change	dV/dt	Rated $\mathrm{V}_{\text {R }}$		10000	V/ $/ \mathrm{s}$

Note

(1) Pulse width $<300 \mu$ s, duty cycle $<2 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction temperature range	T_{J}		-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum storage temperature range	$\mathrm{T}_{\text {Stg }}$		-65 to 175	
Maximum thermal resistance, junction to case per leg	$\mathrm{R}_{\text {thJc }}$	DC operation	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Typical thermal resistance, case to heatsink	$\mathrm{R}_{\text {thcs }}$	Mounting surface, smooth and greased (Only for TO-220)	0.50	
Maximum thermal resistance, junction to ambient	$\mathrm{R}_{\text {thJA }}$	DC operation (For D²PAK and TO-262)	50	
Approximate weight			2	g
Approximate weigh			0.07	oz.
minimum		Non-lubricated threads	6 (5)	$\mathrm{kgf} \cdot \mathrm{cm}$ (lbf • in)
Mounting torque maximum			12 (10)	
Marking device		Case style TO-220AB	MBR4045CT	

Vishay Semiconductors

Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

Fig. 4 - Maximum Thermal Impedance $Z_{\text {thJc }}$ Characteristics (Per Leg)

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Note

(1) Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) \times R_{\text {thJC }}$;
$\mathrm{Pd}=$ Forward power loss $=\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \times \mathrm{V}_{\mathrm{FM}}$ at $\left(\mathrm{I}_{\mathrm{F}(\mathrm{AV})} / \mathrm{D}\right)$ (see fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}}$ at $\mathrm{V}_{\mathrm{R} 1}=$ Rated V_{R}

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Schottky MBR series
3 - Current rating ($40=40 \mathrm{~A}$)
4 - Voltage rating ($45=45 \mathrm{~V}$)
5 - CT = Essential part number
6 - Environmental digit

- $\mathrm{PbF}=$ Lead (Pb)-free and RoHS compliant
- -N3 = Halogen-free, RoHS compliant, and totally lead (Pb)-free

ORDERING INFORMATION (Example)			
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-MBR4045CTPbF	50	1000	Antistatic plastic tube
VS-MBR4045CT-N3	50	1000	Antistatic plastic tube

LINKS TO RELATED DOCUMENTS		
Dimensions		www.vishay.com/doc?95222
Part marking information	TO-220AB PbF	$\underline{w w w . v i s h a y . c o m / d o c ? 95225 ~}$
	TO-220AB -N3	$\underline{w w w . v i s h a y . c o m / d o c ? 95028 ~}$
SPICE model		www.vishay.com/doc?95296

TO-220AB

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES	SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.			MIN.	MAX.	MIN.	MAX.	
A	4.25	4.65	0.167	0.183		E	10.11	10.51	0.398	0.414	3, 6
A1	1.14	1.40	0.045	0.055		E1	6.86	8.89	0.270	0.350	6
A2	2.56	2.92	0.101	0.115		E2	-	0.76	-	0.030	7
b	0.69	1.01	0.027	0.040		e	2.41	2.67	0.095	0.105	
b1	0.38	0.97	0.015	0.038	4	e1	4.88	5.28	0.192	0.208	
b2	1.20	1.73	0.047	0.068		H1	6.09	6.48	0.240	0.255	6, 7
b3	1.14	1.73	0.045	0.068	4	L	13.52	14.02	0.532	0.552	
c	0.36	0.61	0.014	0.024		L1	3.32	3.82	0.131	0.150	2
c1	0.36	0.56	0.014	0.022	4	\varnothing P	3.54	3.73	0.139	0.147	
D	14.85	15.25	0.585	0.600	3	Q	2.60	3.00	0.102	0.118	
D1	8.38	9.02	0.330	0.355		θ	90° to 93°		90° to 93°		
D2	11.68	12.88	0.460	0.507	6						

Notes
(1) Dimensioning and tolerancing as per ASME Y14.5M-1994
(2) Lead dimension and finish uncontrolled in L1
(3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed $0.127 \mathrm{~mm}\left(0.005^{\prime \prime}\right)$ per side. These dimensions are measured at the outermost extremes of the plastic body
(4) Dimension b1, b3 and c1 apply to base metal only
(5) Controlling dimensions: inches
(6) Thermal pad contour optional within dimensions E, H1, D2 and E1
(7) Dimensions E2 x H1 define a zone where stamping and singulation irregularities are allowed
(8) Outline conforms to JEDEC TO-220, except A2 (maximum) and D2 (minimum) where dimensions are derived from the actual package outline

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Vishay:
MBR4045CT VS-MBR4045CTPBF

